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Thermal-ignition analysis in boundary-layer flows 
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The weakly reactive state leading to the ignition of a steady laminar boundary-layer 
flow of a combustible mixture over a hot, isothermal, non-permeable, non-catalytic 
flat plate is studied both numerically and using matched asymptotic analysis in the 
realistic limit of large activation energy. It is shown that the flow consists of a locally 
similar diffusive-reactive region next to  the plate and a non-similar diffusive- 
convective region outside i t ;  that the analytic solution obtained reproduces the 
lower half of the S-shaped ignition-extinction response curve such that ignition is 
expected to occur whcn a suitably defined Damkohler number, which increases with 
the streamwise distance, reaches unity; and that a t  the point of ignition the heat 
transfer from the wall vanishes identically. An explicit expression for the minimum 
distance for ignition to occur is also derived. 

1. Introduction 
The ignition of a combustible gas flow by either a hot body or another hot gasstream 

is of interest to such practical problems as flame stabilization in combustors and the 
initiation of accidental fires and explosions. When the flow Reynolds number is high, 
ignition is frequently achieved within the boundary-layer region, where the mixture 
becomes appreciably heated. Therefore the phenomena of interest are those of chem- 
ically reacting boundary-layer flows. 

One of the major difficulties involved with fundamental studies of this problem is 
the lack of similarity in the flow properties. This is because, whereas self-similar 
solutions abound for chemically inert boundary-layer flows, similarity is frequently 
destroyed in the presence of finite rate chemical reactions. I n  fact the stagnation-point 
boundary-layer flow is probably the only one in which the similarity is preserved 
(Law 1978). 

Various analytical techniques have been devised to obtain approximate solutions 
to the system of highly complex partial differential equations governing the flow. 
Prominent among them are Marble & Adamson's (1954) series expansion technique, 
which employs the streamwise co-ordinate s as the expansion parameter, and Dooley's 
(1957) iteration technique, which treats terms with explicit dependence on s as of 
lower order and hence described by the solution of the previous iteration. 

With these approximations each partial differential equation is reduced to a 
hierarchy of linear, inhomogeneous, ordinary differential equations, which are then 
solved numerically. However, since the accuracy of these approximations depends on 
s being small, as s increases more expansion terms or iteration steps are needed for 
convergence. This not only rapidly multiplies the numerical effort, but the accuracy 
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of the solution is also substantially diminished owing to accumulated errors in the 
previous solutions. 

Examples of other types of approximation are Lees’ (1 958) local-similarity 
approximation of highly cooled hypersonic boundary layers and Marble & Adamson’s 
(1954) integral method of tracing the flame development in the plane mixing-layer 
flow. These special techniques have been extensively reviewed by, for example, Hayes 
& Probstein (1959), Dorrance (1962) and Chung (1965). 

I n  the present study we aim to analyse the structureof chemicallyreacting boundary- 
layer flows both numerically and also by using the newly developed technique of 
matched asymptotic analysis as applied to practical combustion systems, which are 
usually characterized by reactions with large activation energies (Williams 197 1). 
We shall a t  present restrict our study to the weakly reactive states leading to  ignition, 
and to systems which admit self-similar solutions in the inert limit such that the 
absence of similarity is strictly caused by the gas-phase reactions. I n  particular we 
have as our model problem the laminar flow of a combustible mixture over an iso- 
thermal, non-permeable, non-catalytic flat plate. Since this is probably the simplest 
flow configuration exhibiting reaction-induced non-similarity, the structure of the 
flow, particularly the question of similarity, can be studied in greater detail with- 
out being unduly complicated by non-essential factors. 

As will be subsequently demonstrated, the small parameter of expansion for the 
present system is E = pi /pa ,  where pwandpa are thenon-dimensional wall temperature 
and activation energy respectively. I n  the limit of small e, the flow field consists of a 
locally similar diffusive-reactive region next to the plate and a non-similar diffusive- 
convective region outside it. The identification of this flow structure not only is 
physically interesting but also facilitates the mathematical manipulations such that 
the problem can be completely solved analytically. I n  particular, we have derived 
an explicit expression for the ignition distance, which is a parameter of practical 
importance. 

Finally, we note a very recent paper (Berman & Ryazantsev 1978) which has also 
employed the matched asymptotic technique to analyse the same problem. However, 
although the general analytic technique adopted is the same, the two studies differ in 
several important aspects. For example, in the present workwe take the physicalview- 
point that effects due to chemical reactions are manifested as perturbations to  the self- 
similar boundary-layer profiles in the inert limit, and subsequently investigate and 
elaborate on situations under which local similarity can still be preserved. We also 
show that the conventional boundary-layer parameter f’(7) [see equations (8) and 
(1 1 )] not only is a more natural and convenient choice for the transverse independent 
variable, but also may result in a more accurate representation of the inner solution. 
Furthermore, the present study provides a rigorous analysis of the outer solution, and 
thereby the matching relation between the inner and outer solutions. The validity 
and accuracy of the asymptotic approximation have also been numerically 
investigated here. 

I n  the next section the governing equations and the problem of interest are defined. 
In  $ 3  numerical solutions are presented and compared with those obtained by 
assuming complete local similarity in the flow field. I n  9 4 the matched asymptotic 
analysis is conducted and the final solutions derived. 
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2. Formulation 
The problem of interest is the steady laminar boundary-layer flow of a combustible 

mixture with velocity u,, temperature T,, pressure P and species mass fractions 
over an isothermal, non-permeable, non-catalytic flat plate of temperature T,. It is 

assumed that the reaction between the fuel F and the oxidizer 0 leading to the form- 
ation of some product can be represented by a one-step overall irreversible reaction 

yo [O] + V F  [F]+ v p  [product] (1)  

CgC$T+exp ( -  E/RoT). ( 2 )  

with a reaction rate proportional to 

The conservation equations of momentum, species i and energy are then respectively 
(Williams 1965) 

f” +ff” = 0, (3) 

(4) -q {Fi} = - P1 {T}  = (2s/pu,) w ,  

where a prime indicates d / d y  and the operator is defined as 

Here s and 7 are Howarth-Dorodnitsyn variables related to the physical co-ordinates 
z and y parallel and normal to the surface, respectively, according to 

s = x, q = ( x ) * j : p ( x ,  y’) dy‘, 
2XPmprn 

f(s, 7) is related to the stream function @(x, y )  through 

w is the chemical production term 

while T = c P T / Q ,  pi = (vFWF/vi%)K, T is the temperature, P the pressure, p the 
density, u the x velocity, Y the mass fraction, C the molar concentration, cp the specific 
heat, p the viscosity coefficient, W the molecular weight, W an average molecular 
weight, B the frequency factor, E the activation energy, v the stoichiometric molar 
coefficient, Q the chemical heat release per unit mass of fuel consumed, Ro the universal 
gas constant and the subscripts co and w respectively designate the free stream and 
the wall. Furthermore, in deriving (4), we have assumed that viscous heating is 
negligible, that the Prandtl and Schmidt numbers are unity, and that the product pp 
is a constant. 

Equation (4) is in the conventional form adopted in the study of chemically reacting 
boundary-layer flows. For each value of i, this equation consists of four terms represent- 
ing effects due to transverse diffusion, transverse convection, streamwise convection 
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and reaction. We have, however, found that the problem can be more naturally and 
conveniently described by the new independent variables. 

and c =f’(r), 
where cr is the stoichiometric ratio of oxidizer mass to fuel mass. 

Expressing (4) in terms of 6 and f ,  we have 

where 

and Ta = E/RO. The above transformation suppresses the transverse convection term 
such that (12) can be interpreted as consisting of three terms representing (transverse) 
diffusion, (streamwise) convection and reaction. It is also of interest to note that, 
rather than appearing independently, x (or s) really belongs to the group represented 
by 6, which can be identified as some kind of Damkohler number. 

Equations (3) and (12) are to be solved subject to the boundary conditions 

f(0) =f’(O) = 0, f’(Oo) = 1, (14) 

fY6, 0) = %, P(6, 1)  = pa. (16) 

We shall also assume for simplicity that the initial profiles, at [ = 0, are similar. 
Equations (12) and (13) show that the non-similar nature of the flow is a direct 

result of the occurrence of chemical reaction in that in its absence the a/a[ terms will 
vanish identically under the present initial and boundary conditions. However, when 
a reaction is occurring, its effects are perpetually being felt in the streamwise direction 
owing to the presence of g in the reaction term. The flow then ceases to be similar. 

It is, however, reasonable to expect that, since chemical reaction is weak over most 
of the pre-ignition region, the streamwise variations of the flow properties are likely 
to be minimal. In  other words terms involving a/a[ are expected to be locally small 
relative to the diffusion and reaction terms and hence, in accordance with the concept 
of local similarity, may be neglected. Consequently variations in [ are manifested 
parametrically, through the presence of 6 in the reaction term, rather than differen- 
tially. The governing equations are then simplified to ordinary differential equations. 

The assumption of local similarity will obviously break down in t,he vicinity of the 
ignition point, where flow properties change rapidly in the streamwise direction, 
although the associated error in estimating the ignition point is expected to be small. 
Furthermore a more accurate descriptiori in the ignition region within the context of 
boundary-layer theory may not be meaningful because the presence of large gradients 
in the streamwise direction violates the basic assumption of a boundary layer. 

It may also be noted that, since by invoking local similarity the history in the 
streamwise direction is completely ignored, the accuracy of the solution obviously 
depends on how strongly the flow depends on its history. 
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FIGURE 1. Non-similar species profiles. 

In  view of these discussions, it is of interest to investigate in general the charac- 
teristics of the flow, particularly the development of the reaction zone leading to 
ignition and the extent to which local similarity is valid. We have therefore numer- 
ically integrated (3) and ( 1  2) with and without the 3/85 terms. 

3. Numerical solutions 
In  solving (3) and (12), a second-order-correct numerical scheme is employed, with 

implicit determination in the 7 direction and marching in the 5 direction. The grid 
sizes are 0.02 for 7 and variable for 5, although never greater than 0.0251, where the 
subscript I designates the ignition point. For simplicity we have also assumed that 
p = q = r = 1, and that the mixture is stoichiometric, with porn = pFm. In  obtaining 
the results to be presented in figures 1 to 3, we have used the values pa = 0.25, pW = 
0.025, pm = 0.0075 and pFm = 0.2, which correspond to F, = lo4 OK, T,, = lo3 OK, 

T, = 3 x lo2 OK, cp = 0.25 cal/g O K  and Q = 1 0 4  cal/g. 
Figures 1 and 2 show the species and temperature profiles as functions of both 7 and 

[ = f’(7) for different locations 5 along the plate. At the leading edge FF = pFm and p 
varies linearly with f [see (19)] as specified by the initial conditions. As 5 increases, 
chemical reaction is initiated and leads to depletion of the species concentration and 
an increase of the gas temperature. For small values of 5 the hot wall is the most 
reactive state and heat is supplied from the wall to the gas. However, a t  about 5 = 
1.5 x lo4 the transfer ceases and for higher values of 5 there is sufficient chemical heat 
generated in the gas that the temperature maximum is shifted away from the wall. The 
chemical reaction can now be considered to be self-sustaining. Therefore the location 
where heat transfer a t  the wall vanishes can be approximately identified as the ignition 
point (Toong 1957; Sharma & Sirignano 1970). 
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FIGURE 2. Non-similar temperature profiles. 

0.026 

0.024 

0.022 

0.020 

t h  

0.018 

0.016 

0.0 14 

0.012 
3 

FIGURE 3. Comparison between non-similar and locally similar temperature profiles. 
non-similar; __ , locally similar. 
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T w  Tm F-F m P a  ( i )  (ii) (iii) 
0.0250 0.0075 0.2 0.250 1.55 1.37 0.743 
0.0255 0.0075 0.2 0.250 1.31 1.16 0.621 
0.0250 0~0100 0.2 0.250 1.19 1.02 0.546 
0.0250 0.0075 0.1 0.250 6.79 6.59 2.97 
0.0250 0.0075 0.2 0.245 1.25 1.11 0.596 

TABLE 1.  Predicted ignition distances for different system parameters. (i) Numerical solution 
of non-similar flow. (ii) Numerical solution assuming locally similar flow. (iii) Analytic solution. 

Figure 3 compares the temperature profiles given by the exact, non-similar solution 
and the approximate, locally similar solution. Since streamwise convective transport 
is neglected in the locally similar treatment, higher temperatures are predicted. The 
agreement between the two profiles is generally close until 5 exceeds about lo4, a t  
which substantial differences a t  short distances away from the wall occur. However, 
agreement in the vicinity of the wall is always good before ignition is achieved. I n  
particular, using the state of zero heat transfer a t  the wall as the ignition criterion, the 
non-similar and locally similar solutions respectively predict the ignition distances cx 
to be 1.55 x 104 and 1.37 x 104. 

We have further investigated the sensitivity of the predicted ignition distance by 
systematically varying one of pw, pm, pa and yF, (table I ) .  As expected, the system is 
least sensitive to p, and, owing to the Arrhenius factor, most sensitive to pa and next 
!?!. Table I also shows that, whereas the locally similar solution always predicts 
smaller values of 6, the difference from the non-similar resuIts is generally less than 
15% and hence the agreement can be considered to be very good. 

The above results show that the locally similar solution can accurately describe the 
flow characteristics near the wall, particularly the ignition distance. In  the following 
we shall perform an asymptotic analysis of the governing equations. In  so doing we 
are able to delineate the characteristics of the flow field as a whole; in particular it 
will also be demonstrated that the flow near the wall is indeed locally similar. 

4. Asymptotic analysis 
Frozen solution 

The present analysis capitalizes on the concept that for combustion systems of prac- 
tical interest the activation energy is usually large. In  the limit pa-+ 00, the flow 
field is completely frozen and hence self-similar. Equation (12) becomes 

where p = pw - pm is a heat trasfer parameter and the subscript f designates the frozen 
solution. 

For large but finite values of pa, chemical reaction is expected to occur first near the 
hot wall since it has the highest temperature in the flow field. However, a t  a short 
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distance away from the wall the slight decrease in temperature is sufficient to freeze 
the reaction owing to the temperature-sensitive Arrhenius factor. Hence the flow 
field is expected to consist of an inner reactive region and an outer frozen region. 
These two regions will now be separately analysed and matched. 

Inner ,  diffusive-reactive, region 
I n  this region the existence of weak chemical activities is expected to modify the 
flow properties from their frozen values by an amount of order E .  Hence we assume an 
inner solution of the form 

Piin = P,+ E O ( ~ , X ) +  ..., (20) 

Y& = &im+E$h(T,X)+. . . ,  (21) 

where the stretched inner variables are defined as 

It is worth mentioning that, since the inner region extends over small values of the 
transverse independent variable and since f ‘ ( q )  <q ,  the adoption of t; = f’(7) rather 
than 7 as the independent variable to be stretched is believed to result in a more 
accurate representation of the inner solution. 

Substituting (20)-(22) into (12), it can be shown that the perturbed temperature 
O( 7 ,  x) is governed by 

wheref”(0) = 0.4696. This equation shows that, since the reaction term has to be of 
the same order a.s the diffusion term, the convection term is then of order e2 and hence 
can be safely neglected. The exceptionally small magnitude of the convection term is 
due to two factors. First, since gradients are very steep in the thin reaction region, the 
diffusion rate is generally one order larger than the convection rate. Secondly, for the 
present case the convective transport is further slowed because the transport velocity 
6 is only of order E near the wall. These combined effects give the weak e2 dependence. 

By neglecting the convection term, we have therefore established that the flow in 
the inner region is locally similar and is diffusive-reactive in nature. Hence, for 
general 6 < &, (23) becomes 

where 
d28/dx2 = - iAexp (0-x), (24) 

is the relevant Damkohler number €or the present system. 
Equation (24) is to be solved subject to the boundary condition 

0(0) = 0 (26) 
at the wall and a second condition obtained through matching with the outer solution. 

Finally, it may be noted that in writing down (20) and (21) we have assumed that 
the expansion is regular in E .  However, a recent study by Liiii&n & Williams (1978) 
shows that, for the mathematically similar problem of the ignition of a semi-infinite 
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FIGURE 4. The function F,, characterizing the inert flow with varying wall temperature. 

reactive solid after a step increase in the surface temperature, the expansion is not 
regular in that an additional term proportional to E In E appears when interactions 
between the preheating and ignition stages are properly accounted for. We have 
elccted not to include this interaction term because the present results are able ade- 
quately todescribe most of theessential physics without requiring too much mathemat- 
ical manipulation. Furthermore, as emphasized previously, a more rigorous analysis 
involving the structure of the ignition region does not appear to be justified for the 
present problem because the boundary-layer approximation breaks down in this 
region. 

Outer, diffusive-convective, region 

In  the outer region chemical reaction is expected to be frozen to all orders. It is, however, 
not possible to neglect the a/ag term in (12) since at the boundary with the inner region 
the temperature varies with 5. The flow is then non-similar, i.e. diffusive-convective 
in nature, and is governed by 

-EP22(pout1 = 0. (27) 

Therefore the problem of interest for the outer region is essentially that of an inert 
flat-plate boundary-layer flow with a varying wall temperature. Several solutions to 
this problem exist, although we find the one by Chapman & Rubesin (1949) particularly 
useful for the present application. I n  their study the wall temperature is assumed to 
be expressible as a power series in 5. Through separation-of-variable techniques the 
final solution is found to be 

m 

n=l 
'out = p m + P ( 1 - E ) +  c cnCnFn(E), (28) 

where Fn(<) is the solution of 

d2Fn --- 2:E2E"n = 0, Fn(0) = 1, Fn(l) = 0 
dE2 (f ) (29) 

and the sum in (28) is expected to be of the order E .  It is obvious that the solution of 
(29) for small values of 5 is 

Fn(0  + 1-anE as t 4 0 ,  (30) 
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FIGURE 5 .  Lower half of the characteristic S-curve showing the maximum perturbed temperature 

as a function of the Damkohler number A. 

where a, is the initial, constant slope. Equation (29) has also been solved numerically 
(figure 4). The results further confirm that Fn(6) varies linearly with 5 as 5 + 0. 

Matching 
By matching the inner solution (20) with the outer solution (28), in the limit x + co, 
we have 

00 

lim P',+e[&y)-x] = lim Pm+p(l-ex/p)+ z c,Cn(l-ea,x/P). (31) 
X-+* X+W n = l  

This yields 

Equation (33) is the additional boundary condition needed to solve for O(x) in (24). 
Once e(x) has been found, the temperature coefficients c ,  in the outer region can be 
determined by expanding B(m) in powers of A - 6 and equating terms of the same 
power in (32). 

Final solution 
It can be shown (Law 1978) that the solution to (24), (26) and (33) is 

where 
1 + (1  -A)* 
1 - ( 1  -A)&' A =  (35) 

Equation (34) shows that for A < 1 two solutions exist whereas for A > 1 no 
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solution exists. This behaviour indicates the existence of some critical phenomenon, 
namely ignition as a result of thermal runaway in the present case, when A = 1.  This 
can be illustrated more clearly from a plot (figure 5) of @(a) us. A, with 

B(co) = In (4 - [ 1 T (1 - A)*]] 
A l & ( l - A ) &  * 

Figure 5 shows that we have obtained the lower half of the S-shaped ignition-extinc- 
tion response curve (Pendell 1965), A 2 1 being the criterion for ignition to take place. 
Hence using (25), the minimum distance for ignition to occur is 

or in terms of the physical distance x, 

Table 1 shows the ignition distance as predicted by (37). It is seen that the ana- 
lytical values are generally smaller than the numerical results for the locally similar 
solutions by about a factor of two. This is typical of the accuracy of the first-order 
approximation using large activation energy asymptotes. For example Bush & Fendell's 
(1  970) first-order estimate on the laminar flame propagation rate shows similar 
deviation from the numerical value, although close agreement is obtained by including 
the second-order solution. 

The heat transfer at  the wall is given by 

which shows that heat is transferred from the wall to the gasduring the weaklyreactive 
states until the ignition point A = 1 is reached. Therefore to the present order of 
accuracy the adiabaticity ignition criterion is identical with the thermal runaway 
ignition criterion. A small but finite distance between these two states will result when 
higher-order effects are accounted for in the analysis, as was done by LiiiBn &Williams 
(1978) for the transient ignition of a solid. 

5. Conclusions 
Through matched asymptotic analysis in the realistic limit of large activation energy, 

it is revealed that the structure of weakly reactive flat-plate boundary-layer ffow 
consists of a locally similar diffusive-reactive region next to the hot plate and a non- 
similar diffusive-convective region outside it. A suitably defined Damkohler number A 
characterizes the continuous increase in the chemical activities as the combustible 
mixture flows downstream; in particular, it is shown that ignition is expected to occur 
when A reaches unity, a t  which the heat transfer from the wall also ceases. This 
ignition criterion produces an explicit expression for the ignition distance, rendering 
possible its a priori estimation and also assessment of the relative importance and 
sensitivity of the various system parameters in effecting ignition. 

Finally, it  may also be emphasized that, within the constraint of a one-step overall 
reaction, the assumed reaction mechanism is quite general, allowing for arbitrary 
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reaction orders with respect to  the reactant concentrations and both power-law and 
Arrhenius-factor dependence on the temperature. This further enhances the utility of 
the present ignition criterion. 

This research has been supported by the National Science Foundation under Grant 
ENG77-01068. One of the reviewers brought our attention to the papep by Berman & 
Ryazantsev (1978), which appeared in English translation after the prGsent manuscript 
was first submitted. 
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